Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Neurovirol ; 29(2): 121-134, 2023 04.
Article in English | MEDLINE | ID: covidwho-2304443

ABSTRACT

Progress in stem cell research has revolutionized the medical field for more than two decades. More recently, the discovery of induced pluripotent stem cells (iPSCs) has allowed for the development of advanced disease modeling and tissue engineering platforms. iPSCs are generated from adult somatic cells by reprogramming them into an embryonic-like state via the expression of transcription factors required for establishing pluripotency. In the context of the central nervous system (CNS), iPSCs have the potential to differentiate into a wide variety of brain cell types including neurons, astrocytes, microglial cells, endothelial cells, and oligodendrocytes. iPSCs can be used to generate brain organoids by using a constructive approach in three-dimensional (3D) culture in vitro. Recent advances in 3D brain organoid modeling have provided access to a better understanding of cell-to-cell interactions in disease progression, particularly with neurotropic viral infections. Neurotropic viral infections have been difficult to study in two-dimensional culture systems in vitro due to the lack of a multicellular composition of CNS cell networks. In recent years, 3D brain organoids have been preferred for modeling neurotropic viral diseases and have provided invaluable information for better understanding the molecular regulation of viral infection and cellular responses. Here we provide a comprehensive review of the literature on recent advances in iPSC-derived 3D brain organoid culturing and their utilization in modeling major neurotropic viral infections including HIV-1, HSV-1, JCV, ZIKV, CMV, and SARS-CoV2.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Virus Diseases , Viruses , Zika Virus Infection , Zika Virus , Humans , Induced Pluripotent Stem Cells/metabolism , Zika Virus Infection/genetics , Endothelial Cells , RNA, Viral/metabolism , SARS-CoV-2 , Brain , Virus Diseases/metabolism , Organoids/metabolism
2.
J Neurovirol ; 29(1): 35-44, 2023 02.
Article in English | MEDLINE | ID: covidwho-2229555

ABSTRACT

Clinical manifestations of human coronavirus (HCoV)-related diseases are mostly related to the respiratory system, although secondary complications such as headache, anosmia, ageusia, and myalgia have been reported. HCoV infection and replication in chemosensory cells associated with ageusia and anosmia is poorly understood. Here, we characterized HCoV-OC43 and SARS-CoV-2 infection in two types of chemosensory cells, olfactory and taste cells, with their unique molecular and histological characteristics. We first assessed HCoV-OC43 infection in in vitro cultured human olfactory epithelial cells (hOECs) and fungiform taste papilla (HBO) cells. Interestingly, while both cell types were susceptible to HCoV-OC43 infection, viral replication rates were significantly reduced in HBO cells compared to hOECs. More interestingly, while culture media from hOECs was able to produce secondary infection in Vero cells, there was very limited secondary infection from HBO cells, suggesting that HBO cells may not be able to release infectious virus. On the other hand, unlike HCoV-OC43, SARS-CoV-2 showed comparable levels of viral infection rates in both hOECs and HBO cells. Furthermore, our RT-qPCR-based gene array studies revealed that several key genes involved in taste and olfactory functions were significantly altered by SARS-CoV-2 infection. These results may suggest a possible mechanism associated with chemosensory symptoms, such as anosmia and ageusia in patients infected with SARS-CoV-2.


Subject(s)
Ageusia , COVID-19 , Coinfection , Coronavirus OC43, Human , Animals , Chlorocebus aethiops , Humans , Vero Cells , Anosmia , SARS-CoV-2 , Coronavirus OC43, Human/genetics
SELECTION OF CITATIONS
SEARCH DETAIL